Abstract

The stereoselective synthesis of a new amino acid phosphonium salt was described by quaternization of melting triphenylphosphine with the γ-iodo NHBoc-amino ester, derived from L-aspartic acid. The deprotection of the carboxylic acid function to afford the phosphonium salt with a free carboxylic acid group was achieved by a palladium-catalyzed desallylation reaction. This phosphonium salt was used in the Wittig reaction with aromatic or aliphatic aldehydes and trifluoroacetophenone, under solid-liquid phase-transfer conditions in chlorobenzene and in the presence of K(3)PO(4) as weak base, to afford the corresponding unsaturated amino acids without racemization. Thus, the reaction with substituted aldehydes allows to graft various functionalized groups on the lateral chain of the amino acid, such as trifluoromethyl, cyano, nitro, ferrocenyl, boronato, or azido. In addition, the reaction of the amino acid Wittig reagent with α,β-unsaturated aldehydes leads to amino acids bearing a diene on the lateral chain. Finally, this amino acid phosphonium salt appears to be a new powerful tool for the preparation of unsaturated and non-proteinogenic α-amino acids, directly usable for the synthesis of customized peptides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call