Abstract

A series of light-activatable perfluorophenylazide (PFPA)-conjugated carbohydrate structures have been synthesized and applied to glycoarray fabrication. The glycoconjugates were structurally varied with respect to anomeric attachment, S-, and O-linked carbohydrates, respectively, as well as linker structure and length. Efficient stereoselective synthetic routes were developed, leading to the formation of the PFPA-conjugated structures in good yields over few steps. The use of glycosyl thiols as donors proved especially efficient and provided the final compounds in up to 70% total yield with high anomeric purities. PFPA-based photochemistry was subsequently used to generate carbohydrate arrays on a polymeric surface, and surface plasmon resonance imaging (SPRi) was applied for evaluation of carbohydrate-protein interactions using the plant lectin Concanavalin A (Con A) as a probe. The results indicate better performance and equal efficiency of S- and O-linked structures with intermediate linker length.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.