Abstract

The restricted ability of deoxyribonuclease I/snake venom phosphodiesterase digestion to liberate deoxyadenosine (dA) nucleotide adducts of polycyclic aromatic hydrocarbons from DNA, first observed by Dipple and Pigott with the bay-region diol epoxide adducts of 7,12-dimethylbenz[a]anthracene, has been observed with the dA adducts of benz[a]anthracene and benzo[c]phenanthrene diol epoxides. The micrococcal nuclease/spleen phosphodiesterase digestion used in the original 32P postlabeling procedure developed by Randerath to determine DNA adducts also failed to liberate dA nucleotide adducts quantitatively. Thus either method can potentially lead to an underestimation of the extent to which dA has been modified in DNA. The two digestion procedures exhibit systematic and mostly opposite stereoselectivity in the pattern of which dA adducts are resistant to digestion, which suggest that these adducts may have preferred orientations within modified DNA that are determined by whether they have the R or S configuration at C-1, the point of attachment between the exocyclic amino group of dA and the hydrocarbon; this in turn is dictated by the configuration about the precursor benzylic epoxide carbon and the cis versus trans nature of epoxide opening during adduct formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call