Abstract

Self-assembled Fe-iminopyridine cage complexes containing doubly benzylic methylene units such as fluorene and xanthene can be selectively oxidized at the ligand backbone with tBuOOH, with no competitive oxidation observed at the metal centers. The self-assembled cage structure controls the reaction outcome, yielding oxidation products that are favored by the assembly, not by the reactants or functional groups. Whereas uncomplexed xanthene and fluorene control ligands are solely oxidized to the ketone equivalents with tBuOOH, the unfavorability of the self-assembled ketone cages forces the reaction to form the tbutyl peroxide and alcohol-containing oxidation products, respectively. In addition, the oxidation is diastereoselective, with only single isomers of the cage assemblies formed, despite the presence of as many as 10 stereocenters in the final product. The self-assembled structures exploit self-complementary hydrogen bonding and geometrical constraints to direct the postassembly reactions to outcomes not observed in free solution. This selectivity is reminiscent of the fine control of post-translational modification seen in biomacromolecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.