Abstract

In vitro studies and the multiple applications of an oxybutynin (OXY) transdermal delivery system to Japanese healthy volunteers were conducted to characterize the stereoselectivity in the pharmacokinetics of OXY and its metabolite, N-desethyloxybutynin (DEOB). In human liver microsomes, (R)-OXY and (R)-DEOB were eliminated slightly slower than the corresponding (S)-enantiomers. The production of DEOB from OXY for the (R)-enantiomer was also slower than that for the (S)-enantiomer. In human P450-expressing liver microsomes, OXY was metabolized mainly by CYP3A4 among five cytochrome P450s (CYPs) tested (CYP2C9, CYP2C19, CYP2D6, CYP3A4 and CYP3A5) and the kinetics were slightly different for the enantiomer. The unbound fraction of (R)-OXY in plasma was almost two times higher than that of (S)-OXY, whereas (R)-DEOB was bound to plasma protein more than (S)-DEOB. No differences were observed in the blood–plasma concentration ratios for the enantiomers. After multiple applications of the transdermal delivery system, the plasma concentrations of (R)-OXY were lower than those of (S)-OXY. These data indicate that for the stereoselectivity of OXY, the unbound fraction of each OXY enantiomer was a major factor and the metabolism in liver had a minimal effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.