Abstract

The reactions of the early-late trinuclear complex [Cp(acac)Ti(mu(3)-S)(2)Ir(2)(CO)(4)] (1) with electrophiles have been found to occur on the iridium atoms with no other involvement of the early metal than in electronic effects. The reaction with iodine gave two isomers of the diiridium(II) complex [Cp(acac)Ti(mu(3)-S)(2)Ir(2)I(2)(CO)(4)] differentiated by the relative positions of the iodo ligands on the iridium atoms. The reactions with iodoalkanes are highly stereoselective to give one sole isomer of formula [Cp(acac)Ti(mu(3)-S)(2)Ir(2)(R)(I)(CO)(4)] (R = CH(3), CH(2)I, CHI(2)) with a carbonyl and the iodo ligand trans to the metal-metal bond. The structures of the symmetrical isomer with the iodo ligands trans to the metal-metal bond and that of the compound with R = CHI(2) have been solved by X-ray diffraction methods. The stereoselectivity of the oxidative-addition reactions can be rationalized assuming the influence of steric effects of the groups on the titanium center and a radical-like mechanism. Reactions of 1 with the activated acetylenes, dimethylacetylenedicarboxylate and methylacetylenecarboxylate, gave the complexes [Cp(acac)Ti(mu(3)-S)(2)Ir(2)(mu-eta(1)-RC=CCO(2)Me)(CO)(4)] (R = CO(2)Me, H), with the alkyne bridging the two iridium centers as a cis-dimetalated olefin and the C=C bond parallel to the Ir-Ir axis. Two isomers resulting from the disposition of the alkyne along the Ir-Ir vector were observed in solution for the compound with the nonsymmetrical alkyne (R = H), while only one was observed for the compound with R = CO(2)Me. An exchange, fast in the NMR time scale, of the apical with the equatorial carbonyls occured in the complexes [Cp(acac)Ti(mu(3)-S)(2)Ir(2)(mu-eta(1)-RC=CCO(2)Me)(CO)(4)], producing their equivalence in the (13)C((1)H) NMR spectra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.