Abstract

The dependence of the interaction between bovine serum albumin (BSA) and two cinchona alkaloids, quinine (QN) and quinidine (QD), on the absolute configuration of these stereoisomers has been comprehensively studied. The FTIR spectra showed that QN and QD interacted with both CO and C–N groups of BSA, resulting in changes to the secondary structure of the protein. Fluorescence quenching of BSA by the stereoisomers revealed lower efficiency for QD in quenching the Trp emission of BSA when compared to QN. Further analysis accurately described the different binding behaviors and recognition discrepancies of QN and QD towards BSA, which was reflected through binding affinities, driving forces, energy changes and conformational changes during the ligand–protein interactions. Synchronous fluorescence further proved that QD was farther from Trp and Tyr than that of QN. This work could provide basic data for clarifying the binding interaction, metabolism and distribution of cinchona alkaloid stereoisomers in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.