Abstract

Patchy nanoparticles featuring tunable surface domains with spatial and chemical specificity are of fundamental interest, especially for creating three-dimensional (3D) colloidal structures. Guided assembly and regioselective conjugation of polymers have been widely used to manipulate such topography on nanoparticles; however, the processes require presynthesized specialized polymer chains and elaborate assembly conditions. Here, we show how small molecules can form 3D patches in aqueous environments in a single step. The patch features (e.g., size, number, conformation, and stereoselectivity) are modulated by a self-polymerizable aromatic dithiol and comixed ligands, which indicates an autonomous assembly mechanism involving covalent polymerization and supramolecular assembly. Moreover, this method is independent of the underlying nanoparticle material and dimension, offering a streamlined and powerful toolset to design heterogeneous patches on the nanoscale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call