Abstract

The principal oxidative metabolites formed from benz[a]anthracene (BA) by the rat liver microsomal monooxygenase system are the 5,6- and 8,9-arene oxides. In order to determine the enantiomeric composition and absolute configuration of these metabolically formed arene oxides, an HPLC procedure has been developed to separate the six isomeric glutathione conjugates obtained synthetically from the individual enantiomeric arene oxides. Both (+)- and (−)-BA 5,6-oxide gave the two possible positional isomers, but only one positional isomer was formed in each case from (+)- and (−)-BA 8,9-oxide. When [ 14C]-BA was incubated with a highly purified and reconstituted monooxygenase system containing cytochrome P-450c, and glutathione was allowed to react with the arene oxides formed, radio-active adducts were formed predominantly (>97%) from the (+)-(5S,6R) and (+)-(8R,9S) enantiomers. The present results are in accord with theoretical predictions of the steric requirements of the catalytic binding site of cytochrome P-450c.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.