Abstract
Man-made chemicals such as pesticides, when released into the soil environment, are transformed into extractable residue (ER), bound residue (BR), or mineralized. These processes all play a pivotal role in the risk assessment for the use of man-made chemicals. In this study, BR, ER, and mineralization of a novel chiral pesticide, paichongding (IPP), 1-((6-chloropyridin-3-yl)methyl)-7-methyl-8-nitro-5-propoxy-1,2,3,5,6,7-hexahydro-imidazo[1,2-a]pyridine, were investigated in different soils under aerobic conditions. Significant specificity was observed for diastereoisomers of IPP in the formation of BR or mineralization in neutral and alkaline soils. In contrast, no significant difference was found between enantiomers. The overall mineralization was less than 8% of the applied radioactivity and was related to soil pH. Our findings suggest that the environmental fate of chiral pesticides may be influenced by many factors such as soil properties (e.g. pH). More comprehensive and individualized risk assessments should be carried out for individual stereoisomers of a chiral product.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.