Abstract
The stereoselective fates of chiral pesticides in the environment has been reported in many studies. However, there is little data focused on the fate of chiral fosthiazate in the soil and aquatic ecosystems at chiral view. This study investigated the stereoselective fate of fosthiazate in the soil and aquatic ecosystems using ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) and liquid chromatography tandem time-of-flight mass spectrometry (LC-TOF/MS/MS). Significant stereoselective degradation among four fosthiazate stereoisomers were found in both greenhouse soil and water-sediment microcosms. In greenhouse soil, (1R,3S)-fosthiazate degraded faster than other three stereoisomers with the half-life of 2.7 d. The fosthiazate stereisomers in the seawater-sediment microcosm degraded more rapidly than in the river water-sediment microcosm. However, (1S,3R)-fosthiazate and (1S,3S)-fosthiazate possessed shorter degradation half-lives than their enantiomers in both microcosms, with the half-lives ranging from 3.4 d to 15.8 d. Ten degradation products were identified in the water-sediment microcosms, and, six of them were reported for the first time. Oxidation and hydrolysis were confirmed as the main degradation pathways of fosthiazate in the water-sediment microcosms. Our results revealed that the (1R,3S)-fosthiazate and (1R,3R)-fosthiazate may cause more serious ecotoxicity due to the longer half-lives than the other two stereoisomers in environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Environmental Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.