Abstract

This paper reviews the mixed chelation approach to resolution of the optical isomers of D and L dansyl amino acids by high performance liquid chromatography. The use of eluants containing Cu(II) complexes of L-proline, L-arginine, L-histidine, and L-histidine methyl ester effected the separation of many D and L amino acids, including those with aliphatic, polar, and aromatic substituents. The mechanism of separation, which is based on the preferential ternary complex formation of the analyte amino acid and the chiral chelate with Cu(II) in the mobile phase, is discussed. The stereoselectivity depends mainly on the different steric interactions between the alkyl side chains of the amino acid analytes and the chiral ligands coordinating around Cu(II), although such parameters as pH, temperature, organic modifier, and concentration of the chiral additive also affect the chromatographic separation. Among the chiral ligands studied, L-histidine methyl ester is unique in that it possesses both achiral selectivity for the dansyl amino acids and chiral selectivity for the respective D and L enantiomers. With a mobile phase gradient of acetonitrile in a buffer containing Cu(II) L-histidine methyl ester complex, a stereoselective procedure was devised for the analysis of D and L amino acid enantiomers, achieving the separation that the current amino acid analyzer could not perform. Finally, the use of the mixed chelation approach in two biomedical studies is described. In the first application, the histidine methyl ester gradient was adapted for analyzing amino acids in cerebrospinal fluid; in the second, an L-aspartame Cu(II) complex eluant was developed for measuring the urine concentration of D and L pipecolic acid (piperidine-2-carboxylic acid), a metabolite of lysine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call