Abstract

Stereoscopic imaging is becoming increasingly popular. However, to ensure the best quality of experience, there is a need to develop more robust and accurate objective metrics for stereoscopic content quality assessment. Existing stereoscopic image and video metrics are either extensions of conventional 2-D metrics (with added depth or disparity information) or are based on relatively simple perceptual models. Consequently, they tend to lack the accuracy and robustness required for stereoscopic content quality assessment. This paper introduces full-reference stereoscopic image and video quality metrics based on a human visual system (HVS) model incorporating important physiological findings on binocular vision. The proposed approach is based on the following three contributions. First, it introduces a novel HVS model extending previous models to include the phenomena of binocular suppression and recurrent excitation. Second, an image quality metric based on the novel HVS model is proposed. Finally, an optimized temporal pooling strategy is introduced to extend the metric to the video domain. Both image and video quality metrics are obtained via a training procedure to establish a relationship between subjective scores and objective measures of the HVS model. The metrics are evaluated using publicly available stereoscopic image/video databases as well as a new stereoscopic video database. An extensive experimental evaluation demonstrates the robustness of the proposed quality metrics. This indicates a considerable improvement with respect to the state-of-the-art with average correlations with subjective scores of 0.86 for the proposed stereoscopic image metric and 0.89 and 0.91 for the proposed stereoscopic video metrics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.