Abstract

The human visual system has a remarkable ability to construct surface representations from sparse stereoscopic, as well as texture and motion, information. In impoverished displays where few points are used to define regions in depth, the brain often interpolates depth estimates across intervening blank regions to create a compelling sense of a solid surface. The set of experiments described here examined stereoscopic interpolation using a novel technique based on lightness constancy. The effectiveness of this method is notable because it stands as the only technique to date that unequivocally examines the perception of interpolated surfaces, and not surfaces inferred subjectively from depth information in the stimulus. Further, these data support the growing evidence that a primary function of the stereoscopic system is to define three-dimensional surface structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.