Abstract

We describe psychophysical evidence that the human visual system contains information-processing channels for motion in depth in addition to those for position in depth. These motion-in-depth channels include some that are selectively sensitive to the relative velocities of the left and right retinal images. We propose that the visual pathway contains stereoscopic (cyclopean) motion filters that respond to only a narrow range of the directions of motion in depth. Turning to the single-neuron level we report that, in addition to neurons turned to position to depth, cat visual cortex contains neurons that emphasize information about the direction of motion at the expense of positional information. We describe psychophysical evidence for the existence of channels that are sensitive to change size, and are separate from the channels both for motion and for flicker. These changing-size channels respond independently of whether the stimulus is a bright square on a dark ground or a dark square on a bright ground. At the physiological level we report single neurons in cat visual cortex that respond selectively to increasing or to decreasing size independently of the sign of stimulus contrast. Adaptation to a changing-size stimulus produces two separable after-effects: an illusion of changing size, and an illusion of motion in depth. These after-effects have different decay time constants. We propose a psychophysical model in which changing-size filters feed a motion-in-depth stage, and suppose that the motion-in-depth after-effect is due to activity at the motion-in-depth stage, while the changing-size after-effect is due to to activity at the changing-size and more peripheral stages. The motion-in-depth after-effect can be cancelled either by a changing-size test stimulus or by relative motion of the left and right retinal images. Opposition of these two cues can also cancel the impression of motion in depth produced by the adapting stimulus. These findings link the stereoscopic (cyclopean) motion filters and the changing-size filters: both feed the same motion-in-depth stage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.