Abstract

We present a detailed study of the complete evolution of a coronal mass ejection (CME). We have tracked the evolution of both the ejecta and its shock, and further fit the evolution of the fronts to a simple but physics-based analytical model. This study focuses on the CME initiated on the Sun on 2012 July 12 and arriving at the Earth on 2012 July 14. Shock and ejecta fronts were observed by white light images, as well as in situ by the Advanced Composition Explorer satellite. We find that the propagation of the two fronts is not completely dependent upon one another, but can each be modeled in the heliosphere with a drag model that assumes the dominant force of affecting CME evolution to be the aerodynamic drag force of the ambient solar wind. Results indicate that the CME ejecta front undergoes a more rapid deceleration than the shock front within 50 R ☉ and therefore the propagation of the two fronts is not completely coupled in the heliosphere. Using the graduated cylindrical shell model, as well as data from time-elongation stack plots and in situ signatures, we show that the drag model can accurately describe the behavior of each front, but is more effective with the ejecta. We also show that without the in situ data, based on measurements out to 80 R ☉ combined with the general values for drag model parameters, the arrival of both the shock and ejecta can be predicted within four hours of arrival.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.