Abstract

Virtual reality (VR) simulates real-world scenarios by creating a sense of presence in its users. Such immersive scenarios lead to behavior that is more similar to that displayed in real world settings, which may facilitate the transfer of knowledge and skills acquired in VR to similar real world situations. VR has already been used in education, psychotherapy, rehabilitation and it comes as an appealing choice for training intervention purposes. The aim of the present study was to investigate to what extent VR technology for games presented via goggles can be used in a magnetic resonance imaging scanner (MRI), addressing the question of whether brain connectivity differs between VR stimulation via goggles and a presentation from a screen via mirror projection. Moreover, we wanted to investigate whether stereoscopic goggle stimulation, where both eyes receive different visual input, would elicit stronger brain connectivity than a stimulation in which both eyes receive the same visual input (monoscopic). To our knowledge, there is no previous research using games and functional connectivity (FC) in MRI to address this question. Multiple analyses approaches were taken so that different aspects of brain connectivity could be covered: fractional low-frequency fluctuation, independent component analysis (ICA), seed-based FC (SeedFC) and graph analysis. In goggle presentation (mono and stereoscopic) as contrasted to screen, we found differences in brain activation in left cerebellum and postcentral gyrus as well as differences in connectivity in the visual cortex and frontal inferior cortex [when focusing on the visual and default mode network (DMN)]. When considering connectivity in specific areas of interest, we found higher connectivity between bilateral superior frontal cortex and the temporal lobe, as well as bilateral inferior parietal cortex with right calcarine and right lingual cortex. Furthermore, we found superior frontal cortex and insula/putamen to be more strongly connected in goggle stereoscopic vs. goggle monoscopic, in line with our hypothesis. We assume that the condition that elicits higher brain connectivity values should be most suited for long-term brain training interventions given that, extended training under these conditions could permanently improve brain connectivity on a functional as well as on a structural level.

Highlights

  • Virtual reality (VR) is used in various contexts such as entertainment, education, psychotherapy, rehabilitation and other conditions

  • We set out to investigate whether VR visual stimulation using magnetic resonance imaging scanner (MRI) compatible goggles with 3D stereoscopic stimulation differs in terms of brain connectivity from more commonly applied presentation forms using goggles with 2D monoscopic presentation and a conventional screen back-projection via a mirror

  • To study potential brain connectivity differences elicited by 3D stereoscopic, 2D monoscopic and screen stimulations, we chose multiple methods, each of them being able to reveal different aspects of brain connectivity: independent component analysis (ICA) a data-driven technique to extract whole-brain networks, seed-based functional connectivity (SeedFC) that calculates the brain network related to specific regions of interest (ROIs) and graph analysis that characterizes the topology of the brain networks

Read more

Summary

Introduction

Virtual reality (VR) is used in various contexts such as entertainment, education, psychotherapy, rehabilitation and other conditions. An essential feature of VR is that it creates a sense of presence in its users, meaning a sense of being in a virtual environment that is more engaging than the surrounding world (Slater and Wilbur, 1997), which in turn leads to behavior that is more similar to the behavior displayed in real world settings. This feeling of presence may facilitate transfer of knowledge and skills acquired in VR to similar real-world situations, which would make VR an ideal choice for training intervention purposes. Most of the previous studies either used different stimulus material to investigate different degrees of spatial presence (Lee et al, 2005; Baumgartner et al, 2006, 2008; Havranek et al, 2012; Dores et al, 2013) and/or used electroencephalography (EEG; Baumgartner et al, 2006; Havranek et al, 2012; Kober et al, 2012; Slobounov et al, 2015; Dan and Reiner, 2017). Gaebler et al (2014) employed the same movie as stimulus delivered in 3D stereoscopic and monoscopic 2D and evaluated the subject experience and intersubject correlation of brain activity finding higher immersion and a more realistic stimulus was associated with higher intersubject correlations

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call