Abstract

The rising marine environmental concern has recently targeted underwater radiated noise. Amongst various sources present on-board, propeller cavitation noise is known to be the dominant source that may be harmful to marine biodiversity. To be able to minimize anthropogenic noise footprint, full-scale and model-scale test campaigns are the most reliable tools to measure or predict the noise sound pressure level. Within this framework, hydro-acoustic cavitation tunnel experiments carry utmost importance for model-scale tests. Due to limited space of the cavitation tunnel, a shortened dummy-hull is often used, even though the flow passing through the propeller plane of the dummy model does not represent a fully developed wake. This paper presents a wake simulation methodology for a shortened dummy-hull model of Newcastle University research vessel “The Princess Royal” with the aid of stereoscopic particle image velocimetry in Emerson Cavitation Tunnel. With such method, after three iterations sufficient similarity between target wake and simulated wake has been achieved. Adopted approach has been found to be significantly effective in terms of reducing the time and the iterations during wake simulation process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.