Abstract

ABSTRACT The fine magnetic structure is vitally important to understanding the formation, stabilization, and eruption of solar filaments, but so far, it is still an open question yet to be resolved. Using stereoscopic observations taken by the Solar Dynamics Observatory and Solar TErrestrial RElations Obsevatory, we studied the generation mechanism of a two-sided-loop jet (TJ) and the ejection process of the jet plasma into the overlying filament-cavity system. We find that the generation of the two-sided-loop jet was due to the magnetic reconnection between an emerging flux loop and the overlying filament. The jet’s two arms ejected along the filament axis during the initial stage. Then, the north arm bifurcated into two parts at about 50 Mm from the reconnection site. After the bifurcation, the two bifurcated parts were along the filament axis and the cavity which hosted the filament, respectively. By tracing the ejecting plasma flows of the TJ inside the filament, we not only measured that the magnetic twist stored in the filament was at least 5π but also found that the fine magnetic structure of the filament-cavity flux rope system is in well agreement with the theoretical results of Magnetic flux rope models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call