Abstract

The stereoselective synthesis of cyclobutanes that possess an array of stereocenters in a contiguous fashion has attracted the wide interest of the synthetic community. Cyclobutanes can be generated from the contraction of pyrrolidines through the formation of 1,4-biradical intermediates. Little else is known about the reaction mechanism of this reaction. Here, we unveil the mechanism for this stereospecific synthesis of cyclobutanes by means of density functional theory (DFT) calculations. The rate-determining step of this transformation corresponds to the release of N2 from the 1,1-diazene intermediate to form an open-shell singlet 1,4-biradical. The formation of the stereoretentive product is explained by the barrierless collapse of this open-shell singlet 1,4-biradical. The knowledge of the reaction mechanism is used to predict that the methodology could be amenable to the synthesis of [2]-ladderanes and bicyclic cyclobutanes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.