Abstract
The reaction of [Pd(2)(CH(3)CN)(6)][BF(4)](2) (1) with 1,3,5-hexatriene, 1,6-diphenyl-1,3,5-hexatriene (DPHT), or 2,2,9,9-tetramethyl-3,5,7-decatriene (DBHT) afforded bi-eta(3)-allyldipalladium complexes 3, 4, or 5. The reaction of 1 and DBHT proceeded in a stereospecific (syn) manner when the reaction was carried out in CD(2)Cl(2) under aerobic conditions, while a mixture of two diastereomers was formed under N(2) atmosphere. The two diastereomers (5-E,Z,E-antifacial and 5-E,E,E-antifacial) formed from DBHT were isolated, and the structure of 5-E,Z,E-antifacial, which was kinetically formed from the reaction of 1 and (E,E,E)-DBHT, was determined by X-ray diffraction analysis. Addition of phosphine ligands (PPh(3) or dppm) to the dinuclear adduct 5-E,Z,E-antifacial or 5-E,E,E-antifacial in acetonitrile resulted in the stereospecific (syn) elimination of [Pd(2)(PPh(3))(2)(CH(3)CN)(4)][BF(4)](2) (2) or [Pd(2)(dppm)(2)(CH(3)CN)(2)][BF(4)](2) (6). During the PPh(3)-induced dinuclear elimination, the phosphine adducts 7 that retain bi-eta(3)-allyldipalladium structure were observed initially. The phosphine adduct generated from 5-E,E,E-antifacial was isolated and structurally characterized by X-ray diffraction analysis. The reaction of 1 and DPHT in CH(2)Cl(2) afforded unique dipalladium sandwich compounds [Pd(2)(mu-eta(3):eta(3)-DPHT)(2)][BF(4)](2) (8). Interconversion between the sandwich complexes and half-sandwich complexes occurred in a stereoretentive manner. The structure of the sandwich complex 8-E,Z,E formed from 4-E,E,E-antifacial and (E,Z,E)-DPHT was determined by X-ray diffraction analysis. Transfer of the dipalladium moiety [Pd(2)(CH(3)CN)(4)](2+) from DPHT ligand of 4-E,E,E-antifacial onto DBHT ligand proceeded in a stereoretentive manner. The observed stereoretentive dinuclear process is featured by the pairwise behavior of two palladium atoms sitting on the triene pi-plane. In the dinuclear elimination, the two Pd atoms that are initially in the divalent state and bound on the opposite faces (antifacial) come to the synfacial positions to form a Pd-Pd bond prior to dissociation. These results represent the unique property of conjugated olefin as the multidentate ligands for metal-metal moieties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.