Abstract
Stereology applied on histological sections is the 'gold standard' for obtaining quantitative information on cancellous bone structure. Recent advances in micro computed tomography (microCT) have made it possible to acquire three-dimensional (3D) data non-destructively. However, before the 3D methods can be used as a substitute for the current 'gold standard' they have to be verified against the existing standard. The aim of this study was to compare bone structural measures obtained from 3D microCT data sets with those obtained by stereology performed on conventional histological sections using human tibial bone biopsies. Furthermore, this study forms the first step in introducing the proximal tibia as a potential bone examination location by peripheral quantitative CT and CT. Twenty-nine trabecular bone biopsies were obtained from autopsy material at the medial side of the proximal tibial metaphysis. The biopsies were embedded in methylmetacrylate before microCT scanning in a Scanco microCT 40 scanner at a resolution of 20 x 20 x 20 microm3, and the 3D data sets were analysed with a computer program. After microCT scanning, 16 sections were cut from the central 2 mm of each biopsy and analysed with a computerized method. Trabecular bone volume (BV/TV) and connectivity density (CD) were estimated in both modalities, whereas trabecular bone pattern factor (TBPf) was estimated on the histological sections only. Trabecular thickness (Tb.Th), number (Tb.N) and separation (Tb.Sp), and structure model index (SMI) were estimated with the microCT method only. Excellent correlations were found between the two techniques for BV/TV (r = 0.95) and CD (r = 0.95). Additionally, an excellent relationship (r = 0.95) was ascertained between TBPf and SMI. The study revealed high correlations between measures of bone structure obtained from conventional 2D sections and 3D microCT data. This indicates that 3D microCT data sets can be used as a substitute for conventional histological sections for bone structural evaluations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.