Abstract
A persistent problem in investigations of electromagnetic properties of snow, from reflectance at visible wavelengths to emission and backscattering in the microwave, has been the proper characterization of the snow's physical properties. We suggest that the granular and laminar structure of snow can be measured in its aggregated state by stereology performed on sections prepared from snow specimens, and that these kinds of measurements can be incorporated into models of the electromagnetic properties. With careful sampling, anisotropy in the snow microstructure at various scales can be quantified. We show how stereological parameters can be averaged over orientation and optical depth for radiative transfer modeling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.