Abstract

Adamantyl vinyl ketone (AVK) and its copolymers are synthesized using reversible addition fragmentation chain-transfer (RAFT) methodology and then degraded using UV light. The polymerization of AVK is found to be controlled as indicated by a linear correlation between the molecular weights of the polymers produced and monomer conversion as well as a series of chain extensions. The RAFT method is also used to synthesize random and block copolymers of AVK and methyl methacrylate. Irradiating poly(adamantyl vinyl ketone) (PAVK) with UV light affords a polyolefin and adamantane as the major products. Similar products are obtained, along with poly(methyl methacrylate) (PMMA), when the block copolymer is subjected to UV light. The random copolymer undergoes complete degradation under similar conditions. A mechanism wherein stereoelectronic effects channel photodegradation through Norrish I Type pathways in a manner that preserves the main chain of the polymer during the decomposition process is proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call