Abstract

A series of enantiopure hydroxy esters and lactones has been synthesized in a chemodivergent manner via alcohol dehydrogenase (ADH) reduction of the corresponding keto esters by means of cascade or tandem protocols. Thus, ADH from Rhodococcus ruber (ADH-A) or Lactobacillus brevis (LBADH) afforded both antipodes in a very selective way when dealing with small derivatives. With bulkier substrates, ADH from Ralstonia sp. (RasADH) was successfully employed to achieve the synthesis of enantioenriched γ- or δ-hydroxy esters. To isolate the corresponding lactones, two different approaches were followed: a cascade reaction by spontaneous cyclization of the hydroxy ester intermediate, or a one-pot two-step tandem protocol. Moreover, a chemoenzymatic route was designed to obtain a chiral brominated lactone, which enabled further modifications in a sequential fashion by Pd-catalyzed reactions, affording relevant functionalized lactones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.