Abstract

When generated in a mass spectrometer bridged bicyclic 1,3-dioxenium ions derived from 4-O-acylgalactopyranosyl, donors can be observed by infrared spectroscopy at cryogenic temperatures, but they are not seen in the solution phase in contrast to the fused bicyclic 1,3-dioxalenium ions of neighboring group participation. The inclusion of a 4-C-methyl group into a 4-O-benzoyl galactopyranosyl donor enables nuclear magnetic resonance observation of the bicyclic ion arising from participation by the distal ester, with the methyl group influence attributed to ester ground state conformation destabilization. We show that a 4-C-methyl group also influences the side-chain conformation, enforcing a gauche,trans conformation in gluco and galactopyranosides. Competition experiments reveal that the 4-C-methyl group has only a minor influence on the rate of reaction of 4-O-benzoyl or 4-O-benzyl-galacto and glucopyranosyl donors and, consequently, that participation by the distal ester does not result in kinetic acceleration (anchimeric assistance). We demonstrate that the stereoselectivity of the 4-O-benzoyl-4-C-methyl galactopyranosyl donor depends on reaction concentration and additive (diphenyl sulfoxide) stoichiometry and hence that participation by the distal ester is a borderline phenomenon in competition with standard glycosylation mechanisms. An analysis of a recent paper affirming participation by a remote pivalate ester is presented with alternative explanations for the observed phenomena.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call