Abstract

Outer hair cells, isolated from mammalian cochleas, are known to respond to electrical stimulation with elongation or contraction of the cell's cylindrical soma. It is assumed that such shape changes, when driven by the cell's receptor potential in vivo, are a part of the feedback process that underlies cochlear amplification. To date it has not been possible to demonstrate somatic shape changes upon normal mechanical stimulation of the cell--i.e., the deflection of its hair bundle. We show here that mechanically induced hair-bundle deflection produces somatic motility of the cell. Such motility is dependent upon a functioning forward transducer process and disappears upon interference with transduction. The motile response also reflects the hair bundle's known directional sensitivity. This demonstration of mechanically driven motility indicates that the cell may possess capabilities to affect its mechanical environment under control of its own receptor potential and, thereby, participate in a local cochlear feedback process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.