Abstract

The stereochemistry of S-(2-chloro-1,1,2-trifluoroethyl)glutathione formation was studied in rat liver cytosol, microsomes, N-ethylmaleimide-treated microsomes, 9000g supernatant fractions, purified rat liver microsomal glutathione S-transferase, and isolated rat hepatocytes. The absolute configuration of the chiral center generated by the addition of glutathione to chlorotrifluoroethene was determined by degradation of S-(2-chloro-1,1,2-trifluoroethyl)glutathione to chlorofluoroacetic acid, followed by derivatization to form the diastereomeric amides N-(S)-alpha-methylbenzyl-(S)-chlorofluoacetamide and N-(S)-alpha-methylbenzyl-(R)-chlorofluoroacetamide, which were separated by gas chromatography. Native and N-ethylmaleimide-treated rat liver microsomes, purified rat liver microsomal glutathione S-transferase, rat liver 9000g supernatant, and isolated rat hepatocytes catalyzed the formation of 75-81% (2S)-S-(2-chloro-1,1,2-trifluoroethyl)glutathione; rat liver cytosol catalyzed the formation of equal amounts of (2R)- and (2S)-S-(2-chloro-1,1,2-trifluoroethyl)glutathione. In rat hepatocytes, microsomal glutathione S-transferase catalyzed the formation of 83% of the total S-(2-chloro-1,1,2-trifluoroethyl)glutathione formed. These observations show that the microsomal glutathione S-transferase catalyzes the first step in the intracellular, glutathione-dependent bioactivation of the nephrotoxin chlorotrifluoroethene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call