Abstract
The Schellman motif is a widely observed helix terminating structural motif in proteins, which is generated when the C-terminus residue adopts a left-handed helical (αL) conformation. The resulting hydrogen-bonding pattern involves the formation of an intramolecular 6 → 1 interaction. This helix terminating motif is readily mimicked in synthetic helical peptides by placing an achiral residue at the penultimate position of the sequence. Thus far, the Schellman motif has been characterized crystallographically only in peptide helices of length 7 residues or greater. The structure of the hexapeptide Boc–Pro–Aib–Gly–Leu–Aib–Leu–OMe in crystals reveal a short helical stretch terminated by a Schellman motif, with the formation of 6 → 1 C-terminus hydrogen bond. The crystals are in the space group P212121 with a = 18.155(3) Å, b = 18.864(8) Å, c = 11.834(4) Å, and Z = 4 . The final R1 and wR2 values are 7.68 and 14.6%, respectively , for 1524 observed reflections [Fo ≥ 3ς(Fo)]. A 6 → 1 hydrogen bond between Pro(1)CO · · · Leu(6)NH and a 5 → 2 hydrogen bond between Aib(2)CO · · · Aib(5)NH are observed. An analysis of the available oligopeptides having an achiral Aib residue at the penultimate position suggests that chain length and sequence effects may be the other determining factors in formation of Schellman motifs. © 1999 John Wiley & Sons, Inc. Biopoly 50: 13–22, 1999
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.