Abstract

Ketoreductase (KR) domains from modular polyketide synthases (PKSs) catalyze the reduction of 2-methyl-3-ketoacyl acyl carrier protein (ACP) substrates and in certain cases epimerization of the 2-methyl group as well. The structural and mechanistic basis of epimerization is poorly understood, and only a small number of such KRs been studied. In this work, we studied three recombinant KR domains with putative epimerase activity: NysKR1 from module 1 of the nystatin PKS, whose stereospecificity can be predicted from both the protein sequence and the product structure; RifKR7 from module 7 of the rifamycin PKS, whose stereospecificity cannot be predicted from the protein sequence; and RifKR10 from module 10 of the rifamycin PKS, whose specificity is unclear from both the sequence and the structure. Each KR was individually incubated with NADPH and (2R)- or (2RS)-2-methyl-3-ketopentanoyl-ACP generated enzymatically in situ or via chemoenzymatic synthesis, respectively. Chiral GC-MS analysis revealed that each KR stereospecifically produced the corresponding (2S,3S)-2-methyl-3-hydroxypentanoyl-ACP in which the 2-methyl substituent had undergone KR-catalyzed epimerization. Thus, our results have led to the identification of a prototypical set of KR domains that generate (2S,3S)-2-methyl-3-hydroxyacyl products in the course of polyketide biosynthesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.