Abstract
AbstractThe structures of iminium salts formed from diarylprolinol or imidazolidinone derivatives and α,β‐unsaturated aldehydes have been studied by X‐ray powder diffraction (Fig. 1), single‐crystal X‐ray analyses (Table 1), NMR spectroscopy (Tables 2 and 3, Figs. 2–7), and DFT calculations (Helv. Chim. Acta 2009, 92, 1, 1225, 2010, 93, 1; Angew. Chem., Int. Ed. 2009, 48, 3065). Almost all iminium salts of this type exist in solution as diastereoisomeric mixtures with (E)‐ and (Z)‐configured +NC bond geometries. In this study, (E)/(Z) ratios ranging from 88 : 12 up to 98 : 2 (Tables 2 and 3) and (E)/(Z) interconversions (Figs. 2–7) were observed. Furthermore, the relative rates, at which the (E)‐ and (Z)‐isomers are formed from ammonium salts and α,β‐unsaturated aldehydes, were found to differ from the (E)/(Z) equilibrium ratio in at least two cases (Figs. 4 and 5, a, and Fig. 6, a); more (Z)‐isomer is formed kinetically than corresponding to its equilibrium fraction. Given that the enantiomeric product ratios observed in reactions mediated by organocatalysts of this type are often ≥99 : 1, the (E)‐iminium‐ion intermediates are proposed to react with nucleophiles faster than the (Z)‐isomers (Scheme 5 and Fig. 8). Possible reasons for the higher reactivity of (E)‐iminium ions (Figs. 8 and 9) and for the kinetic preference of (Z)‐iminium‐ion formation are discussed (Scheme 4). The results of related density functional theory (DFT) calculations are also reported (Figs. 10–13 and Table 4).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.