Abstract

The electron-transfer-catalyzed rearrangement of the housanes 1 affords regioselectively the two cyclopentenes 2 and 3 by 1,2-migration of a group at the methano bridge. Appropriate ring annelation in the intermediary cyclopentane-1,3-diyl radical cation 1(*+) changes the stereochemical course of the rearrangement from complete stereoselectivity (stereochemical memory) for the structurally simple housane 1b to partial loss of stereoselectivity through competing conformational interconversion for the tricyclic housane 1c. Additional cyclohexane annelation, as in the tetracyclic housane 1a, results in complete loss of stereocontrol through Curtin-Hammett behavior, as substantiated by the viscosity dependence on the product ratio of the rearrangement. Whereas in the radical cations 1b(*+) and 1c(*+) the 1,2-shifts (k(2) and k(3)) are faster than the conformational anti <==> syn change (k(1), k(-1)), the reverse applies for the radical cation 1a(*+). Such structural manipulation of conformational effects in radical cation rearrangements has hitherto not been documented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call