Abstract
NASA scenarios for lunar and planetary missions include robotic vehicles that function in both teleoperated and semi-autonomous modes. Under teleoperation, on-board stereo cameras may provide 3-D scene information to human operators via stereographic displays; likewise, under semi-autonomy, machine stereo vision may provide 3-D information for obstacle avoidance. In the past, the slow speed of machine stereo vision systems has posed a hurdle to the semi-autonomous scenario; however, recent work at JPL and other laboratories has produced stereo systems with high reliability and near real-time performance for low-resolution image pairs. In particular, JPL has taken a significant step by achieving the first autonomous, cross-country robotic traverses (of up to 100 meters) to use stereo vision, with all computing on-board the vehicle. Here, we describe the stereo vision system, including the underlying statistical model and the details of the implementation. The statistical and algorithmic aspects employ random field models of the disparity map, Bayesian formulations of single-scale matching, and area-based image comparisons. The implementation builds bandpass image pyramids and produces disparity maps from the 60×64 level of the pyramids at rates of up to two seconds per image pair. All vision processing is done in one 68020 augmented with Datacube image processing boards. We argue that the overall approach provides a unifying paradigm for practical, domain-independent stereo ranging. We close with a discussion of practical and theoretical issues involved in evaluating and extending the performance of the stereo system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.