Abstract
In this paper, we consider the problem of 2D human pose estimation on stereo image pairs. In particular, we aim at estimating the location, orientation and scale of upper-body parts of people detected in stereo image pairs from realistic stereo videos that can be found in the Internet. To address this task, we propose a novel pictorial structure model to exploit the stereo information included in such stereo image pairs: the Stereo Pictorial Structure (SPS). To validate our proposed model, we contribute a new annotated dataset of stereo image pairs, the Stereo Human Pose Estimation Dataset (SHPED), obtained from YouTube stereoscopic video sequences, depicting people in challenging poses and diverse indoor and outdoor scenarios. The experimental results on SHPED indicates that SPS improves on state-of-the-art monocular models thanks to the appropriate use of the stereo information.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.