Abstract
This paper formulates and solves a new variant of the stereo correspondence problem: simultaneously recovering the disparities, true colors, and opacities of visible surface elements. This problem arises in newer applications of stereo reconstruction, such as view interpolation and the layering of real imagery with synthetic graphics for special effects and virtual studio applications. While this problem is intrinsically more difficult than traditional stereo correspondence, where only the disparities are being recovered, it provides a principled way of dealing with commonly occurring problems such as occlusions and the handling of mixed (foreground/background) pixels near depth discontinuities. It also provides a novel means for separating foreground and background objects (matting), without the use of a special blue screen. We formulate the problem as the recovery of colors and opacities in a generalized 3D (x, y, d) disparity space, and solve the problem using a combination of initial evidence aggregation followed by iterative energy minimization.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.