Abstract

Self-assembled monolayers (SAMs) are employed as hole-selective contacts in inverted perovskite solar cells (PSCs) and have achieved record power conversion efficiency (PCE) over 26%. However, the tendency of extensively employed SAM [2-(3,6-Dimethoxy-9H-carbazol-9-yl)ethyl]phosphonic acid to aggregate leads to its uneven coverage to the transparent conducting oxide substrate, which subsequently compromises the photovoltaic performance. Herein, a novel tert-butyl functionalized phosphonic acid carbazole SAM is developed, i.e., (4-(3,6-di-tert-butyl-9H-carbazol-9-yl)butyl)phosphonic acid (tBu-4PACz), and introduced to a mixed SAM system as the hole-extraction layer in inverted PSCs. The stereo-hindrance of the bulky tert-butyl group prevents undesired aggregation and leads to better conformality, which facilitates more efficient hole-extraction and suppresses interfacial recombination losses. The tBu-4PACz SAM-based inverted PSC has achieved record level PCE of 26.25% (26.21%, certificated) with outstanding fill factors over 86%. Moreover, the mixed SAM based inverted PSC devices maintained over 94.7% of their initial efficiency after 500h continuous maximum power-point tracking under simulation 1-sun irradiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.