Abstract

Robust navigation for mobile robots over long distances requires an accurate method for tracking the robot position in the environment. Techniques for position estimation by determining the camera ego-motion from monocular or stereo sequences have been previously described. However, long-distance navigation requires a very high level of robustness and a very low rate of error growth. In this paper, we describe a methodology for long-distance rover navigation that meets these goals using robust estimation. We show that a system based on only camera ego-motion estimates will accumulate errors with super-linear growth in the distance travelled, owing to increasing orientation errors. When an absolute orientation sensor is incorporated, the error growth can be reduced to a linear function of the distance travelled. We tested these techniques using both extensive simulation and hundreds of real rover images and achieved a low, linear rate of error growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.