Abstract
Three-dimensional reconstruction based on stereo vision technology is an important research direction in the field of computer vision, and has a wide range of applications in industrial measurement, medical image reconstruction, cultural relic preservation, robot navigation, virtual reality and other fields. However, the three-dimensional reconstruction of moving objects usually has poor accuracy, low efficiency and poor visualization effect due to the image noise, motion blur, complex and time-consuming calculation etc. In this article, a disparity optimization method based on depth change constraint is proposed, which utilizes the correlation of the adjacent frames in the continuous video sequence to eliminate mismatches and correct the wrong disparity values by introducing a depth change constraint threshold. The experiments on the video images which are taken by a binocular stereo vision system demonstrate that our method of removing incorrect matches bears satisfactory results and it can greatly improve the effect of the three-dimensional reconstruction of the moving objects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.