Abstract

Depth estimation is a fundamental issue in computational stereo. To obtain accurate stereo depth estimation, all mechanical parameters with a high precision need to be measured in order to achieve subpixel accuracy and to match features between two different images. This paper investigates accurate depth estimation with different mechanical parameter errors, such as camera calibration and alignment errors, which mainly result from camera lens distortion, camera translation, rotation, pitch, and yaw. For each source of the errors, a model for the error description is presented, and the accurate depth estimation due to this error is quantitatively analyzed. Depth estimation algorithms under an individual error, and with all the errors, are given. Experimental results show that the proposed models can rectify the errors and calculate the accurate depths effectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call