Abstract

Stereographic display has been proposed as a possible method of improving performance in reading computed tomographic (CT) examinations acquired for lung cancer screening. Optimizing such displays is important given the large volume of image data that must be evaluated for each of these examinations. This study is designed to explore certain tradeoffs between rendering methods designed for the stereo display of CT images. Stereo CT image compositing methods, including distance-weighted averaging, distance-weighted maximum intensity projection (MIP), and conventional MIP, were applied to lung CT images and compared for lung nodule detection and characterization. Using the Jonckheere test indicated a statistically significant (P < .01) increase in contrast among the three compositing methods. Wilcoxon-Mann-Whitney test showed significant differences in contrast between distance-weighted averaging and conventional MIP (P < .01) and between averaging and distance-weighted MIP (P < .05), but not between distance-weighted MIP and conventional MIP (P > .05). Conventional MIP compositing provided the highest image contrast, but produced ambiguities in local geometric detail and texture, whereas averaging resulted in the lowest contrast, but preserved geometric detail. Distance-weighted MIP partially recovered geometric information, which was lost in images composited by means of conventional MIP. Our results indicate that distance-weighted MIP may be a better choice for nodule detection in stereo lung CT images for its high local contrast and partial preservation of geometric information, whereas compositing by means of distance-weighted averaging is preferable for nodule characterization. The relative clinical value of these compositing methods needs to be evaluated further.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.