Abstract

The orthogonal, stepwise, and order-independent unfolding of single-chain nanoparticles (SCNPs) is introduced as a key step towards actively controlling the folding dynamics of SCNPs. The SCNPs are compacted by multiple hydrogen bonds and host-guest interactions. Well-defined diblock (AB) and tetrablock (ABCD) copolymers are equipped with orthogonal recognition motifs via modular ligation along the lateral chain. Initially, single-chain folding of the diblock copolymer was induced by the host-guest complexation of benzo-21-crown-7 (B21C7, host) and a secondary ammonium salt (AS, guest), representing an efficient avenue for single-chain collapse. Next, both orthogonal Hamilton wedge (HW) and cyanuric acid (CA) as well as B21C7-AS motifs were employed to generate SCNPs based on the ABCD polymer system. Subsequently, the stepwise dual-gated and order-independent unfolding of the SCNPs was investigated by the addition of external stimuli. The folding and unfolding were explored by 1D (1) H NMR spectroscopy, dynamic light scattering (DLS), and diffusion-ordered NMR spectroscopy (DOSY).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call