Abstract
Sulfite reduction by dissimilatory sulfite reductases is a key process in the global sulfur cycle. Sulfite reductases catalyze the 6e- reduction of SO32- to H2S using eight protons (SO32- + 8H+ + 6e- → H2S + 3H2O). However, detailed research into the reductive conversion of sulfite on transition-metal-based complexes remains unexplored. As part of our ongoing research into reproducing the function of reductases using dinuclear ruthenium complex {(TpRu)2(μ-Cl)(μ-pz)} (Tp = HB(pyrazolyl)3), we have targeted the function of sulfite reductase. The isolation of a key SO-bridged complex, followed by a sulfite-bridged complex, eventually resulted in a stepwise sulfite reduction. The reduction of a sulfite to a sulfur monoxide using 4H+ and 4e-, which was followed by conversion of the sulfur monoxide to a disulfide with concomitant consumption of 2H+ and 2e-, proceeded on the same platform. Finally, the production of H2S from the disulfide-bridged complex was achieved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.