Abstract

Ultralong room-temperature phosphorescent (URTP) materials have attracted wide attention in anti-counterfeiting, optoelectronic display, and bio-imaging due to their special optical properties. However, room-temperature blue phosphorescent materials are very scarce during applications because of the need to simultaneously populate and stabilize high-energy excited states. In this work, a stepwise stiffening chromophore strategy is proposed to suppress non-radiative jump by continuously reducing the internal spin of the chromophore, and successfully developing a series of blue phosphorescent materials. Phosphorescence lifetimes of more than 3 s are achieved, with the longest lifetime reaching 5.44 s and lasting more than 70 s in the naked eye. As far as is know, this is the best result that has been reported. By adjusting the chromophore conjugation, multicolor phosphorescences from cyan to green have been realized. In addition, these chromophores exhibit the same excellent optical properties in urea and polyvinyl alcohmance (PVA). Finally, these materials are successfully applied to luminescent displays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.