Abstract

We study the conditions for a nilpotent Lie group to be foliated into subgroups that have square integrable (relative discrete series) unitary representations, that fit together to form a filtration by normal subgroups. Then we use that filtration to construct a class of “stepwise square integrable” representations on which Plancherel measure is concentrated. Further, we work out the character formulae for those stepwise square integrable representations, and we give an explicit Plancherel formula. Next, we use some structure theory to check that all these constructions and results apply to nilradicals of minimal parabolic subgroups of real reductive Lie groups. Finally, we develop multiplicity formulae for compact quotients $$N/\varGamma $$ where $$\varGamma $$ respects the filtration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.