Abstract

The fabrication of chiral thin films with tunable circularly polarized luminescence (CPL) colors is important in developing chiroptical materials but remains challenging due to the lack of assembly-initiated chiral film formation methodology. Here, by adopting a combined solution aggregation and interfacial assembly strategy, we report the fabrication of chiral film materials with full-color and white-light CPL. A biquinoline glutamic acid ester (abbreviated as BQGE) shows a typical aggregation-induced emission property with blue CPL after solution aggregation. Subsequent interfacial assembly of these solution aggregates on a solid substrate leads to the formation of a CPL active film consisting of nanobelt structures. Since the BQGE molecule has a coordination site, the CPL emission of an individual BQGE film can be extended from blue to green emission upon coordination with a zinc ion, accompanied by morphology transition from nanobelts to nanofibers. Further extension to red-color CPL is successfully achieved by coassembly with an achiral acceptor dye. Interestingly, the proper combination of coordination ratio and acceptor loading ratio provides bright white-light CPL emission from the BQGE/Zn2+/PDA triad composite film. This work provides a new approach to fabricating chiroptical film materials with controlled microscopic morphology and tunable CPL properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.