Abstract

Precise synthesis of carbon-based nanostructures with well-defined structural and chemical properties is of significance towards organic nanomaterials, but remains challenging. Herein, we report on a synthesis of nitrogen-doped porous carbon nanoribbons through a stepwise on-surface polymerization. Scanning tunneling microscopy revealed that the selectivity in molecular conformation, intermolecular debrominative aryl-aryl coupling and inter-chain dehydrogenative cross-coupling determined the well-defined topology and chemistry of the final products. Density functional theory calculations predict that the ribbons are semiconductors, and the band gap can be tuned by the width of the ribbons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.