Abstract

A mathematical theory is developed that enables us to derive a formula for the equilibrium distribution of allelic frequencies in a finite population when selectively neutral alleles are produced in stepwise fashion (stepwise mutation model). It is shown that the stepwise mutation model has a remarkable property that distinguishes it from the conventional infinite allele model (Kimura-Crow model): as the population size increases indefinitely while the product of the effective population size and the mutation rate is kept at a fixed value, the mean number of different alleles contained in the population rapidly reaches a plateau which is not much larger than the effective number of alleles (reciprocal of homozygosity).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.