Abstract

The structural characteristics of RNA-peptide (RNP) complexes are suitable for molding of a ligand-binding pocket of the RNP complex in a stepwise manner. The first step involves molding of the RNA subunit by in vitro selection of an RNP pool originating from an RNA library and the peptide, as previously reported for the construction of an ATP-binding RNP complex from an RRE RNA-Rev peptide complex. The second step involves selection from an RNP library consisting of Rev peptides with randomized amino acid residues and the RNA subunit selected in the first molding. The ATP-binding pocket produced by sequential molding of RNA and peptide subunits shows higher affinity to ATP and a distinct specificity for ATP versus dATP as compared to the ATP-binding RNP receptor in which only the RNA subunit has been molded. The second step selection from the peptide-based RNP library allows expansion of the ATP recognition surface, consisting of both RNA and peptide subunits, to enhance the affinity and selectivity to discriminate ATP against dATP. Our approach of stepwise molding offers the advantage of increasing the diversity of the RNP library by utilizing characteristics of different biopolymers. The ribonucleopeptide-based, multi-subunit approach is also extendable to other biomacromolecular assemblies, which may yield artificial receptors and enzymes with increased specificity and more diverse chemical activities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.