Abstract

Magnetization reversal processes of hexagonal dense arrays of bi-segmented Ni and Fe50Co50 nanowires consisting of two well defined diameters (45 and 80 nm) have been studied. The nanowires were grown inside of tailored pores of anodic alumina templates by combined anodization, atomic layer deposition (ALD) and electrodeposition techniques. The experiments have allowed to identify their two-step magnetization reversal process ascribed to the respective segments of different diameter. This is concluded from the differential susceptibility observed in the hysteresis loops, contrary to those for nanowires with homogeneous diameter. These results are also confirmed by the first-order reversal curve (FORC) distribution diagrams, where an elongation parallel to the interaction axis around two coercive field values is obtained, which is correlated to the difference in diameter of the two segments. This well-defined two-step magnetization reversal process through the nanowire diameter design is thought to be very useful for the advanced control of the remagnetization in arrays of magnetic multidomain systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.