Abstract

Applying truncation, augmentation and tridiagonalisation on infinite block matrices with infinite block matrix elements and duality properties of G/M/1 and M/G/1, and considering two Poisson arrivals as a MAP queueing network, we develop a stepwise algorithm to explicitly compute the joint distribution of the number of tasks in a system (queue length). We believe it is the first time such a development is offered in the literature. The system consists of an infinite-buffer single-server service-station, a splitter and an infinite-buffer single-mover delay-station. Tasks arrive from two sources: singly from outside and by batch from inside, the delay-station to the service-station. Both types of tasks arrive according to a Poisson process with two different parameters. Batch sizes vary between a minimum and a maximum number. A numerical example that demonstrates when the algorithm works and how the parameters must be chosen to reduce the approximation error together with an error analysis is included.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.